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Abstract  Amyloid-β (Aβ) and tau are important bio-
markers to predict the progression of cognitively unim-
paired (CU) to dementia due to Alzheimer’s disease 
(AD), according to the diagnosis framework from the 
US National Institute on Aging and the Alzheimer’s 
Association (NIA-AA). However, it is clinically dif-
ficult to predict those subjects who were already with 
Aβ positive (A +) or tau positive (T +). As a typical 
characteristic of neurodegeneration in the diagno-
sis framework, the hypometabolism of the posterior 

cingulate cortex (PCC) has significant clinical value in 
the early prediction and prevention of AD. In this paper, 
we proposed the glucose metabolism in the PCC as a 
biomarker supplement to Aβ and tau biomarkers. First, 
we calculated the standard uptake value ratio (SUVR) 
of PCC based on fluorodeoxyglucose positron emission 
computed tomography (FDG PET) imaging. Secondly, 
we performed Kaplan–Meier (KM) survival analyses 
to explore the predictive performance of PCC SUVR, 
and the hazard ratio (HR) was calculated. Finally, we 
performed Pearson correlation analyses to explore the 
physiological significance of PCC SUVR. As a result, 
the PCC SUVR showed a consistent downward trend 
along the AD continuum. KM analyses showed bet-
ter predictive performance when we combined PCC 
SUVR with cerebro-spinal fluid (CSF) Aβ42 (from 
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HR = 2.56 to 3.00 within 5  years; from HR = 2.76 to 
4.20 within 10 years) and ptau-181 (from 2.83 to 3.91 
within 5 years; from HR = 2.32 to 4.17 within 10 years). 
There was a slight correlation between Aβ42/Aβ40 and 
PCC SUVR (r = 0.14, p = 0.02). In addition, several 
cognition scales were also correlated to PCC SUVR 
(from r = –0.407 to 0.383, p < 0.05). Our results showed 
that glucose metabolism in PCC may be a potential bio-
marker supplement to the Aβ and tau biomarkers to pre-
dict the progression of CU to AD.

Keywords  Cognitively unimpaired · FDG PET · 
Kaplan–Meier analysis · Neurodegeneration · 
Posterior cingulate cortex

Introduction

Alzheimer’s disease (AD) is the most common form 
of dementia. The course of AD is irreversible, which 
makes AD early diagnosis and prediction significant. 
The National Institute of Aging and Alzheimer’s 
Association (NIA-AA) criteria for AD suggested three 
important biomarkers, including amyloid-β (Aβ), 
pathologic tau, and neurodegeneration [AT(N)] [1]. 
Researches on brain imaging biomarker genomics are 
also in full swing [2]. However, the current research 
showed that the AT(N) framework had limitations, 
especially the low predictive accuracy of the progres-
sion from cognitively unimpaired (CU) with evidence 
of Aβ positive (A +) or tau positive (T +) [3]. There-
fore, additional biomarkers are needed clinically.

Abnormal glucose metabolism is considered to be 
an important biomarker for AD [4–6]. The fluorine-
18-labeled-fluorodeoxyglucose positron emission com-
puted tomography (18F-FDG PET) has been frequently 
used as an imaging technique to visualize abnormal 
glucose metabolism in the human brain in  vivo [7]. 
Especially, the hypometabolism in the parietotempo-
ral association area, posterior cingulate cortex (PCC), 
and precuneus were typical characteristics of AD [8]. 
Among these, as one part of the default mode network 
(DMN), PCC plays a certain role in spatial memory, 
morphological learning, and cognitive control [9].

Recently, several researchers have used glucose 
metabolism to predict the progression of CU to AD 
[10]. A small sample trial used the regional FDG 
PET standard uptake value ratio (SUVR) in predict-
ing imminent progression to memory decline [11]. 

Another study showed that the transition status of 
individuals was significantly associated with some 
baseline periods of glucose metabolism in PCC [12]. 
However, few studies focus on the combination of 
glucose metabolism and Aβ or tau biomarkers in pre-
dicting CU progression. Therefore, the study hypoth-
esized that abnormal glucose metabolism was useful 
to predict the progression of CU to dementia due to 
AD. Especially, we supposed that abnormal glucose 
metabolism in PCC could be a supplement biomarker 
supplement to the Aβ and tau biomarkers to predict 
the progression of CU to AD.

The purposes of this paper are as follows: (1) to test 
whether the glucose metabolism in PCC could be a 
potential biomarker for the prediction of CU progres-
sion. PCC SUVR was used to represent the glucose 
metabolism in PCC in this study. (2) To explore whether 
PCC SUVR combining Aβ or tau biomarkers could 
improve the predictive performance for CU conversion. 
(3) To explore the physiological significance of glucose 
metabolism in PCC by correlation analyses between 
PCC SUVR existing biomarkers and cognition scales.

Materials and methods

Participants

A total of 849 participants were included in this 
study, including subjects from Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI, cohort 1) 
and Xuanwu Hospital, Beijing, China (cohort 2). 
Cohort 1 is composed of 413 CU individuals, 76 
patients with mild cognitive impairment (MCI), and 
197 patients with AD from ADNI. Detailed inclu-
sion information related to participant consent in 
ADNI is available at https://​adni.​loni.​usc.​edu/. 
All ADNI participants received baseline 18F-FDG 
PET scans, T1-weighted structural MRI scans, and 
demographic information, including age, gender, 
apolipoprotein E (ApoE) status, Mini-Mental State 
Examination (MMSE) values, Functional Activi-
ties Questionnaire (FAQ), and Montreal Cognitive 
Assessment (MOCA). Among them, 253 subjects 
underwent quantitative measurements of cerebro-
spinal fluid (CSF) Aβ42 and Aβ40. In total, 302 sub-
jects underwent quantitative measurement of CSF 
ptau-181. Standardization of measurement methods 
for CSF can be found at https://​adni.​loni.​usc.​edu/.

https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
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In addition, cohort 2 was enrolled as an independ-
ent test dataset, including 148 CU individuals and 15 
patients with MCI. The entry criteria for CU individu-
als have been described previously [13]. The following 
exclusion criteria for CU subjects were applied: (1) a 
history of neurological or psychiatric illness; (2) prior 
exposure to neuroleptic agents or drug use; (3) an abnor-
mal neurological examination; (4) a history of stroke, 
high blood pressure, brain disease, or mental illness. 
MCI participants were diagnosed using the Jak/Bondi 
actuarial neuropsychological test method [14]. Specifi-
cally, participants were considered to be MCI patients if 
any one of the following three criteria was met: (1) they 
had an impaired score, defined as > 1 SD below the age-
corrected normative mean, on both measures within at 
least one cognitive domain (i.e., memory, language, or 
speed/executive function); (2) they had one impaired 
score, defined as > 1 SD below the age-corrected nor-
mative mean, in each of the three cognitive domains 
sampled; or (3) they had a score on the FAQ = 9 indi-
cating dependence in three or more daily activities. All 
participants in cohort 2 received baseline 18F-FDG PET 
scans, T1-weighted structural MRI scans, and demo-
graphic information, including age, gender, ApoE sta-
tus, MMSE, FAQ, and Montreal Cognitive Assessment 
Basic (MOCA-B). CSF was not collected in this cohort.

To validate PCC SUVR as a potential biomarker, we 
selected participants who converted from CU to cogni-
tive impairment (CI, including MCI and AD) from the 
ADNI database as cohort 3. This cohort included 58 
CU subjects who progressed to CI within 5 years and 
84 CU subjects who progressed to CI within 10 years.

This study was approved by ADNI, Beijing 
Xuanwu Hospital Institutional Review Board, and 
written informed consent was obtained from all par-
ticipants or authorized representatives.

Acquisition protocol and data preprocessing

Detailed information on the data acquisition of 
ADNI can be found on the website (https://​adni.​loni.​
usc.​edu/). In cohort 2, all 18F-FDG PET images were 
acquired from an integrated simultaneous 3.0-T TOF 
PET/MR (SIGNA PET/MR, GE Healthcare, Mil-
waukee, Wisconsin, USA) at Xuanwu Hospital. Each 
participant was instructed to fast for at least 6 h and 
must have a confirmed serum glucose level below 
8  mmol/L. A 35-min dynamic scan was acquired 
approximately 40 min after the intravenous injection 

of 3.7  MBq/kg of 18F-FDG. 3D T1-weighted MRI 
images were adopted at the sagittal plane of the 
gradient-echo sequence. Parameters are as follows: 
FOV = 256 × 256 mm2 , matrix = 256 × 256 , slice 
thickness = 1mm2 , gap = 0 , slice number = 192 , 
TR = 6.9ms , TE = 2.98ms , TI = 450ms , flip angle 
= 12◦ , voxel size = 1 × 1 × 1 mm3 . 

The preprocessing procedures contain format 
conversion, correction, spatial standardization, and 
smoothness. First, all DICOM images were con-
verted into NIfTI format. Then the head movement 
correction of images was underway. Next, each PET 
image was co-registered to the T1 image and co-
registered PET image was normalized into the Mon-
treal Neurological Institute (MNI) standard space 
with 3 × 3 × 3 mm3 voxel size. Finally, the images 
were smoothed using an 8-mm full width at half 
maximum Gaussian kernel to increase signal-to-
noise ratios. All the above steps were performed by 
using Statistical Parametric Mapping 12 software 
(SPM12, Department of Imaging Neuroscience, 
Institute of Neurology, London, UK) implemented 
in MATLAB 2018b (Mathworks Inc.).

SUVR map calculation

For each participant, the standard uptake value (SUV) 
of the whole brain is calculated by using the auto-
mated anatomical labeling (AAL) atlas as a template, 
and then the SUV of each voxel is standardized with 
reference to the average SUV of the whole brain. The 
formula is as follows:

In the above formula, SUV
voxel

 is the SUV of 
each voxel, and SUV

mean
 is the average SUV of the 

whole brain. Then we obtain the SUVR map of each 
participant.

Definition of PCC hypometabolism in CU subjects

In this paper, the PCC brain region is defined throughout 
the AAL brain regions, numbered 35 and 36. The left 
side of PCC is with Talairach coordinates of (− 2, − 36, 
37), and the right side of PCC is with Talairach coordi-
nates of (3, − 45, 11).

SUVR =
SUV

voxel

SUV
mean

https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
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First, we calculated the PCC SUVR of 413 CU 
participants in cohort 1; the formula is as follows:

In the above formula, SUV
ROI

 is the sum of SUV in 
the ROI, num

ROI
 is the number of voxels in the ROI, 

and SUV
mean

 is the average SUV of the whole brain.
As there is no definition of the hypometabolism of 

CU, the median value of PCC SUVR in cohort 1 was 
proposed as the threshold according to previous studies 
[15, 16]. In this study, the PCC SUVR of 413 CU par-
ticipants was ranked from the largest to smallest, and 
the median value was chosen as the partition threshold. 
The bottom 50% of the participants below the thresh-
old were defined as CU (PCC +), and the top 50% of 
the participants above the threshold were defined as 
CU (PCC-). To verify the effectiveness of the median 
value method, we have performed cross-cohort verifi-
cation of the rationality of the median division between 
cohorts 1 and 2 (see Additional file 1).

Distribution of PCC SUVR across the AD continuum

To observe the distribution of PCC SUVR in the AD 
continuum, we calculated the PCC SUVR of MCI and 
AD in cohorts 1 and 2. For cohort 1, we obtain PCC 
SUVR for CU (PCC-), CU (PCC +), MCI, and AD, 
and then we executed one-way ANOVA analysis and 
Tukey’s multiple-comparisons test among different 
groups. The above analyses were also performed in 
cohort 2. For comparison, we also employed CSF Aβ42 
and ptau-181 as risk factors to repeat the above analy-
ses in cohort 1. Positive status for these biomarkers is 
defined by < 980 pg/mL for Aβ42, and > 21.8 pg/mL for 
ptau-181 [17]. Based on the dichotomized biomarkers, 
the participants were divided into a positive subgroup 
and a negative subgroup for each biomarker.

Validation of PCC SUVR as a predictor

In order to verify whether PCC SUVR can be used as an 
effective predictor, Kaplan–Meier (KM) analyses on CU 
(PCC +) and CU (PCC-) in cohort 3 were carried out. 
First, we collected the participants in the CU group who 
were converted to CI and recorded the conversion time. 
Then, we applied PCC SUVR as the predictor to conduct 
KM analysis between CU (PCC +) and CU (PCC-). The 

SUVR
ROI

=
SUV

ROI
∕num

ROI

SUV
mean

differences in survival curves between groups were ana-
lyzed by the Log-rank test, and the hazard ratio (HR) was 
also calculated. As a comparison, Aβ42 and ptau-181 were 
employed as Aβ and tau predictors, and KM analyses were 
performed among CU (A + /A-) and CU (T + /T-), respec-
tively. The differences in survival curves between groups 
were analyzed by the Log-rank test. Finally, we combined 
the PCC SUVR with Aβ42 and ptau-181 respectively and 
performed KM analyses in CU (PCC + A + / PCC- A-) 
and CU (PCC + T + / PCC-T-) groups. In order to verify 
whether PCC SUVR is useful for prediction in different 
periods, the above analyses were carried out at two time 
points: the progression occurred within 5 years and the 
progression occurred within 10 years. In order to verify 
the effectiveness, we also calculated SUVR in cuneus, 
occipital, and parietal, repeated the above experiments, 
and compared them with PCC.

Correlation analyses

In this paper, Pearson correlation analyses of PCC 
SUVR and cognition scales were done in cohort 
1, including MMSE, FAQ, MOCA, and Everyday 
Cognition scales (Ecog). The correlation analyses 
between PCC SUVR and CSF Aβ42, Aβ42/Aβ40, and 
ptau-181 were also done.

Statistical analyses

Demographic and clinical characteristics are compared by 
analyses of variance, Chi-square test, and two-sample t-test 
as appropriate. The difference of PCC SUVR is compared 
using one-way ANOVA test, and the differences between 
groups are corrected by Tukey’s multiple-comparisons 
tests. The level of significance is set at p < 0.05. Statisti-
cal analyses are carried out by using SPSS 23.0 software 
(SPSS Inc., Chicago, IL), MATLAB 2018b (Math Works 
Inc., Sherborn, MA), and GraphPad Prism version 9.4.1. 
(GraphPad Software, San Diego, California, USA).

Results

Participants

Table  1 presents the demographic information of 
the participants from each cohort. In cohort 1, the 
level of Aβ42/Aβ40 in the CU (PCC +) group is sig-
nificantly lower than that in the CU (PCC-) group 
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(p < 0.01). There is no statistical difference in other 
parameters between the above two groups. The age of 
the MCI group is significantly higher than that of the 
CU and AD groups, which has no significant differ-
ence between the AD group and the CU group. The 
scores of MMSE and MOCA in the MCI group and 
AD group are significantly lower than those in the 
CU group (p < 0.001). The scores of MOCA in the 
MCI group are significantly higher than AD group 
(p < 0.05). The FAQ scores in the MCI group and AD 
group are significantly higher than those in the CU 
group (p < 0.001). AD group is significantly higher 
than MCI group of FAQ (p < 0.05). The Chi-square 
test shows that the frequency of ApoE-4 carriers in 
the MCI group and the AD group is significantly 

higher than that in the CU group (p < 0.001). The 
number of ApoE-4 carriers in the AD group is signifi-
cantly higher than that in MCI group (p < 0.01). The 
deposition levels of ptau-181 in the MCI group and 
AD group are significantly higher than those in the 
CU group (p < 0.001). The level of ptau-181 deposi-
tion in AD group is significantly higher than that in 
MCI group (p < 0.05).

In cohort 2, the age of the MCI group is higher 
than that of the CU group, and the difference is sta-
tistically significant (p = 0.026). The Chi-square test 
shows that the frequency of ApoE-4 carriers in the 
MCI group is significantly higher than that in the CU 
group (p = 0.025), and the frequency of ApoE-4 car-
riers in the CU (PCC +) group is significantly higher 

Table 1   Characteristics of participants

Age, Aβ42/Aβ40, MMSE, FAQ, MOCA, and ptau-181 are given as median (interquartile range). The MOCA of the Xuanwu cohort is 
MOCA-B
ADNI, Alzheimer Disease Neuroimaging Initiative; PCC, posterior cingulate cortex; CU, cognitively unimpaired; MCI, mild cogni-
tive impairment; AD, Alzheimer’s disease; SMC, significant memory concern; CN, cognitive normal; MMSE, Mini-Mental State 
Examination; FAQ, Functional Activities Questionnaire; MOCA, Montreal Cognitive Assessment
a Two-sample t-test, CU (PCC +) and CU (PCC-)
b  �2 test with CU
c Two-sample t-tests with CU
d Two-sample t-tests with AD
e  �2 test with AD

Cohort 1 (ADNI) Cohort 2 (Xuanwu hospital) Cohort 3 (ADNI)

CU MCI AD CU MCI CU converters 
(within 5 years)

CU converters 
(within 10 years)

PCC +  PCC- PCC +  PCC-

Female / male 106 / 100 111 / 96 30 / 46 b 79 / 118 b 46 / 28 54 / 20 5 / 10 24 / 34 38 / 46

Age 73.40 (9.20) 72.60 (9.05) 78.90 (8.97) d 75.30 (11.80) 64.00 
(6.00)

65.00 
(7.00)

71.50 
(20.00) c

78.60 (8.15) 80.00 (7.60)

SMC / CN 60 / 146 42 / 165 N/A N/A 37 / 37 35 / 39 N/A N/A N/A

Converters / 
non-converters

(within 5 years)

34 / 172 24 / 183 N/A N/A N/A N/A N/A N/A N/A

Converters / 
non-converters

(within 10 years)

48 / 158 36 / 171 N/A N/A N/A N/A N/A N/A N/A

Aβ42 1115.00(996.25) 1486.00(739.00) 920.00(990.50) 718.00(368.00) N/A N/A N/A 903.50(648.50) 802.50(635.25)

Aβ42 / Aβ40 0.15 (0.10) 0.19 (0.07) a 0.12 (0.10) c, d 0.10 (0.03) c N/A N/A N/A 0.11 (0.08) 0.11 (0.07)

ApoE-4
(noncarrier / 

carrier)

141 / 64 153 / 54 40 / 36 b, e 59 / 127b 53 / 21 58 / 16 7 / 8b 35 / 23 50 / 34

MMSE 29.00 (2.00) 30.00 (1.00) 25.50 (6.50) c 23.00 (4.00) c 29.00 
(2.00)

29.00 
(2.00)

21.50 
(8.50) c

27.00 (3.50) 27.00 (5.00)

FAQ 0.00 (0.00) 0.00 (0.00) 8.50 (17.25) c, d 13.00 (11.00) c 0.00 
(0.00)

0.00 
(0.00)

6.50 
(11.00) c

1.00 (4.00) 1.00 (6.00)

MOCA 26.00 (4.00) 26.00 (4.00) 22.00 (7.00) c, d 18.00 (7.00) c 26.00 
(2.00)

26.00 
(3.00)

14.50 
(10.00) c

25.00 (3.50) 24.00 (2.00)

ptau-181 20.68 (10.56) 18.57 (12.98) 25.39 (5.12) c, d 33.17 (20.18) c N/A N/A N/A 37.61 (22.26) 34.48 (22.50)



	 GeroScience

1 3
Vol:. (1234567890)

than that in the CU (PCC-) group (p = 0.043). There 
is no significant difference in gender distribution 
between MCI and CU groups. There are no statisti-
cal differences in other parameters between the CU 
(PCC +) group and the CU (PCC-) group.

The real case of PCC + in CU subjects

We obtained the SUVR map of each participant. Figure 1 
depicts the SUVR maps of the whole brain of two sample 
participants. The participant in Fig. 1a has SUVR results 
as follows: PCC SUVR = 1.04, DMN SUVR = 0.93; 
while the participant in Fig. 1b has SUVR results as fol-
lows: PCC SUVR = 1.30, DMN SUVR = 0.93. For the 
two participants, the SUVRs in the DMN region are 
similar, but the participant in Fig. 1a has obviously lower 
metabolism in the PCC brain region than the participant 
in Fig. 1b.

Distribution of PCC SUVR across the AD continuum

The PCC SUVR distributions of the two cohorts are 
shown in Fig.  2. In cohort 1, the CU group is divided 
into CU (PCC +) (SUVR = 1.02 ± 0.05) and CU (PCC-) 
(SUVR = 1.16 ± 0.05) with the median value as the seg-
mentation threshold (SUVR threshold = 1.092). The PCC 
SUVRs of MCI and AD are 1.00 ± 0.13 and 0.98 ± 0.11, 

respectively. The results of one-way ANOVA test show 
that there are significant differences between the groups 
(p < 0.001). PCC SUVR shows a downward trend in 
cohort 1. The threshold (SUVR = 1.092) was applied 
to cohort 2 and it also indicates a downward trend. For 
comparison, we have applied the median PCC SUVR of 
cohort 2 to the two cohorts (see Additional file 1), and 
the results exhibit that cohort 1 does not show a stable 
downward trend. In addition, we pool the two cohorts to 
take the median, and both cohorts show a steady down-
ward trend (see Additional file 1).

As a comparison, the PCC SUVR differences 
between CU (A +) and CU (A-) in cohort 1 are 
compared. The results of the two-sample t-test indi-
cate that there is a significant difference (p = 0.009) 
between CU (A +) (SUVR = 1.07 ± 0.84) and CU 
(A-) (SUVR = 1.10 ± 0.82). No significant difference 
(p = 0.434) between CU (T +) (SUVR = 1.08 ± 0.83) 
and CU (T-) (SUVR = 1.09 ± 0.85) is observed. The 
relevant results can be found in the supplementary 
material (see Additional file 2).

Validation of PCC SUVR as a predictor

In this paper, KM survival analyses were performed 
on the two subgroups of CU based on whether the 
progression occurred within 5 or 10  years, and the 

Fig. 1   Real cases of PCC hypometabolism in CU subjects. 
The age, gender, and ApoE of the two subjects matched. a A 
case of CU (PCC +), male, age = 72.0  years, ApoE-4 noncar-

rier. b A case of CU (PCC-), male, age = 72.0 years, ApoE-4 
noncarrier. c The spatial location of DMN in the AAL template
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survival curves were statistically analyzed by the Log-
rank test. As shown in Fig.  3a to c, the PCC SUVR 
cannot distinguish high risk and low risk in the 5 years 
group, while Aβ42 and ptau-181 have a good ability 
to distinguish high-risk and low-risk groups, and the 
HRs are 2.561 and 2.828 respectively. In the 10 years 
group, the KM curves are shown in Fig. 3d to f. All 
three predictors are able to distinguish high risk and 
low risk, the HRs of PCC SUVR, ptau-181, and Aβ42 
are 1.635, 2.322, and 2.762, and the p values are 
smaller than the 5 years group.

Then we superimposed PCC SUVR with CSF Aβ42 
and ptau-181. KM curve results for the 5 years group 
are shown in Fig. 4a to b. Under the joint action of the 
two groups, the high- and low-risk groups are well dis-
tinguished. Among them, PCC SUVR combining ptau-
181 has a stronger prediction ability (HR = 3.913) and 
followed by PCC SUVR combining Aβ42 (HR = 3.002). 
The above steps were repeated in the 10 years group, 
and the similar results were obtained as shown in 
Fig.  4c to d. The prediction ability of PCC SUVR 
combining ptau-181 is weaker (HR = 4.171) than PCC 
SUVR combining Aβ42 (HR = 4.199). The results dem-
onstrated that Aβ42 and ptau-181 had an impact on the 
survival prediction performance of PCC SUVR. The 
above experiments were repeated with cuneus, occipi-
tal, and parietal SUVR. None of the three brain regions 

was able to predict CU transformation (p > 0.05), and 
the prediction performance was not improved after 
combing CSF Aβ42 and ptau-181 (see Additional file 3).

Correlation analyses

There is a slight correlation between PCC SUVR and 
Aβ42/Aβ40 in the CU group (r = 0.179, p = 0.004) as 
shown in Fig. 5a. When we counted the CU (PCC +), 
MCI, and AD together, the correlation still existed 
(r = 0.140, p = 0.02) (Fig. 5b).

In addition, there is a slight correlation between 
PCC SUVR and Ecog scales in the CU group, includ-
ing EcogPtLang (r = –0.118, p = 0.036), EcogPtMem 
(r = –0.166, p = 0.003), EcogPtTotal (r = –0.137, 
p = 0.014), and ADASQ4 (r = –0.128, p = 0.009). 
When we combined CU, MCI, and AD groups 
together, the correlations became stronger. The corre-
lation coefficients between PCC SUVR and EcogPt-
Lang, EcogPtMem, EcogPtTotal, and ADASQ4 
are 0.129, 0.214, –0.191, and –0.407 respectively 
(p < 0.01 for all) in cohort 1. For relevant charts, 
please refer to the supplementary materials (see 
Additional file 4).

In cohort 1, in addition to the clinical information 
mentioned above, PCC SUVR also has a significant 
correlation with EcogPtPlan (r = –0.179, p < 0.001), 

Fig. 2   The PCC SUVR distribution of ADNI cohort (a) and Xuanwu cohort (b). *p < 0.05; ****p < 0.0001. A two-sample t-test was 
performed
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EcogPtDivatt (r = –0.113, p = 0.006), and EcogPt-
Visspat (r = –0.190, p < 0.001). Significant correla-
tions between PCC SUVR and clinical neurologi-
cal test questionnaires, including FAQ (r = –0.369, 
p < 0.001), MOCA (r = 0.348, p < 0.001), and MMSE 
(r = 0.383, p < 0.001), were observed. For relevant 
charts, please refer to supplementary materials (see 
Additional file 5).

Discussion

In this paper, we found that glucose metabolism in 
PCC could be used as a potential biomarker for the 
prediction of CU conversion. The results of survival 
analyses showed that the supplementation of PCC 
SUVR to Aβ42 and ptau-181 could improve the pre-
dictive performance of CU progression. The correla-
tion results found a slight correlation between PCC 
SUVR and participants’ subjective cognition. The 
results suggested that glucose metabolism in PCC had 
potential to be used as a complement to Aβ and tau 
biomarkers. Notably, two cross-racial cohorts were 
included in this paper.

It has been well known that brain histopathologi-
cal changes preceded cognitive symptoms for many 
years. Although the evidence obtained by FDG PET 
in the CU stage is limited, glucose metabolism from 
FDG PET scans plays an important role in both clini-
cal and preclinical diagnoses [8]. According to previ-
ous studies, hypometabolism in PCC was observed in 
identifying individuals at high risk of AD [15]. In this 
study, the PCC SUVR showed the same trend in the 
AD continuum in both Chinese and Western cohorts 
as shown in Fig.  2, which is consistent with the lit-
erature. Cross-cohort experiments showed that almost 
each cohort showed a stable downward trend when 
the median value of PCC SUVR was used to distin-
guish the CU(PCC +) and CU(PCC-) (please refer to 
Additional file 1). Therefore, we believed that it was 
reasonable to divide CU(PCC +) and CU(PCC-) by 
the median value method. We applied the median 
value of PCC SUVR from cohort 2 to the two cohorts 
and the results showed that cohort 1 did not show a 
stable downward trend, which may be due to a smaller 
sample size in cohort 2.

The cingulate gyrus is an area of early AD-asso-
ciated pathological protein deposition [18], as well 

Fig. 3   Kaplan–Meier survival curve based on PCC SUVR, 
Aβ42, and ptau-181 respectively. The top row is the Kaplan–
Meier survival curve of subjects whose conversion occurred 

within 5 years. The bottom row is the Kaplan–Meier survival 
curve of subjects whose conversion occurred within 10 years
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as an area of early atrophy, reduced thickness, or 
reduced metabolism [8, 19]. Aβ, tau, and metabolic 
damage are common phenomena of AD, but there are 

differences for the three kinds of biomarkers in time 
distribution. Available studies suggested that the pre-
clinical stage of AD was characterized by amyloid 

Fig. 4   Kaplan–Meier survival curve based on PCC SUVR 
combing Aβ42 and ptau-181, respectively. The top line is the 
Kaplan–Meier survival curve of whose conversion occurred 

within 5 years. The bottom line is the Kaplan–Meier survival 
curve of whose conversion occurred within 10 years

Fig. 5   Pearson correlation between PCC SUVR and Aβ42/Aβ40. a In CU group. b In CU (PCC +), MCI, and AD groups
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deposition [18], which was followed by the spread of 
neurofibrillary tangle tau pathology from the medial 
temporal lobes into the neocortex. We found that CSF 
Aβ42 plus PCC SUVR could improve the predictive 
performance of CU progression as shown in Figs. 3 
and 4. We speculated that it was the ceiling effect of 
Aβ, which made them not sensitive enough to the 
progression of the disease course when they were 
used as predictors alone. The ceiling effect may have 
occurred in the CU phase. To verify our conjecture, 
we performed the KM survival analyses of CU under 
two time points of 5 and 10 years. First, in Fig. 3, the 
predictive performance of the 10  years group was 
better than that of the 5  years group when we used 
Aβ42 and PCC SUVR alone as the predictor, which 
indicated that the predictive performance of the bio-
marker deposition level in the baseline was different 
for different time points and that the time point of CU 
progression was closer to 10  years. However, when 
ptau-181 was used as an independent predictor, the 
prediction performance of 5 years was better than that 
of 10 years. We hypothesized that it was because tau 
was accumulated along with the course of the disease, 
and tau deposition level in the baseline period had 
less influence on tau deposition level after 10  years 
than that after 5 years, so the prediction performance 
was weaker. Secondly, when PCC SUVR was com-
bined with Aβ42 or ptau-181 as predictors as Fig.  4 
shows, the predictive performance was significantly 
improved compared with that used alone, indicating 
the effectiveness of PCC SUVR as a supplementary 
biomarker for Aβ or tau biomarkers. In addition, the 
predictive performance of the 10 years group was still 
better than that of the 5 years group.

In CU subjects, we found a slight correlation 
between Aβ42/Aβ40 and PCC SUVR as Fig. 5 shows. 
Considering that the ADNI cohort included in this 
study covers multiple countries and centers, under 
the influence of several complicated factors, we got 
these acceptable results compared to reported litera-
tures [20–22]. Another large study in elderly cog-
nitive normal subjects showed a significant nega-
tive correlation between local amyloid levels and 
metabolic signaling in several AD-typical regions, 
including PCC [15]. Two other studies showed cor-
relations between local amyloid and PCC SUVR 
[23, 24]. These studies were consistent with the 
results of this paper. These results suggested that 
glucose metabolism in PCC and Aβ deposition 

already existed at the cognitive normal stage. How-
ever, we did not find a correlation between PCC 
SUVR and tau. Some investigators have previously 
found an inverse correlation between CSF tau lev-
els and glucose metabolism in the right frontal, 
temporal, and parietal lobes of the brain [25, 26]. 
Other studies demonstrated no significant correla-
tion between glucose metabolism and CSF tau lev-
els [27, 28]. This may be due to pathological het-
erogeneity. Some studies found that CSF tau levels 
remained stable during dementia [29], whereas cog-
nitive symptoms and hypometabolism deteriorated 
during the progression of the disease [30]. This 
made the mechanism of correlation between CSF 
tau and metabolism more complex. Therefore, the 
relationship between the two upstream and down-
stream in the CU phase needs further research.

Besides, we found that there was a certain correla-
tion between PCC SUVR and several items of the Ecog 
scale in the stage of CU (please refer to Additional 
file  4). The Ecog can be used to measure relatively 
mild functional changes that may predate loss of inde-
pendence in major activities of daily living, and assess 
functional abilities that are clearly linked to specific 
cognitive abilities, in other words, the everyday corre-
lates of specific neuropsychological impairments [31]. 
Studies have shown that subjective cognitive decline is 
the first clinical manifestation on the AD continuum, 
manifesting as a decline in the self-experience of cog-
nitive function without evidence of objective cogni-
tive impairment [32–34]. The results indicated that the 
change of metabolic damage occurred in the subject 
cognitive impairment period.

This study had some limitations. First, the median 
value threshold (to divide PCC + and PCC-) used in this 
paper was obtained by the data-driven method, which 
was reasonable, but there may be the problem of false 
positives or false negatives. Further study can be con-
sidered by expanding the sample size and including 
follow-up FDG PET data to test the threshold. Second, 
the value of CSF Aβ42 and Aβ40 from ADNI was not 
a commercially available IVD assay. It was an assay 
that was currently under development and for investi-
gational use only. The measuring range of the assay is 
200 (lower technical limit)–1700  pg/mL (upper tech-
nical limit). The performance of the assay beyond the 
upper technical limit has not been formally established. 
Therefore, the values above the upper technical limit 
were restricted to exploratory research purposes and 
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were excluded for clinical decision-making. This may 
have an impact on the results of this study. And biologi-
cal sex differences, as an important phenotype in the 
study of neurodegenerative diseases [35, 36], may lead 
to different degrees of hypometabolism, which may 
be a direction of future research. Finally, in addition 
to AD-like pathology, many factors may affect PCC 
SUVR, such as vascular stenosis, inflammation, and 
tumor, but such information was lacking and not inves-
tigated in this study, and we plan to further investigate 
the other possible contributing factors in the future.

Conclusions

Cross-cohort experiments indicated that PCC SUVR 
exhibited a steady downward trend across the disease 
continuum. The results of survival analysis showed 
that the supplement of Aβ42 and ptau-181 by PCC 
SUVR could improve the prediction performance of 
CU progress. In summary, we found the important 
role of glucose metabolism in PCC in AD predic-
tion. The PCC SUVR can be used as a supplement 
to the prediction of CU progression for Aβ and tau 
biomarkers. The results of this study are helpful for 
researchers to understand the early pathology of AD 
and provide theoretical support for the early preven-
tion of AD clinically.
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